Andelina.me -
semoga sehat selalu. Pada artikel ini kamu akan mengetahui lebih banyak tentang
Bank Soal
Soal Matematika, mengenai
Barisan dan Geret Geometri Materi Matematika SMP. Untuk lebih jelasnya simak ulasan lengkap di bawah ini.
Untuk mempelajari materi materi matematika barisan geometri dan deret geometri ada baiknya kalian memahami lebih dulu materi
Barisan dan deret aritmatika silahkan menuju link tersebut. Barisan bilangan seperti apasih yang disebut dengan barisan geometri ?
 |
ilustrasi barisan dan deret geometri |
Suatu barisan U1, U2, U3,U4, … Un disebut sebagai barisan geometri jika perbandingan dua suku yang berurutan selalu tetap. Perbandingan antara dua suku yang berurutan itu disebut pembanding atau rasio, biasanya dilambangkan dengan ” r “
jadi r = U2/U1 = U3/U2 = U4/U3 = … = Un
apabila suku pertama dinyatakan dengan a maka bentuk barisan geometrinya mejadi :
a, ar, ar2, ar3, … arn-1
Nah gimana udah paham dengan apa itu barisan geometri, kalo udah paham mari lanjut ke pembahasan deret geometri.
Pada deret geometri U1 + U2 + U3 + U4, … Un
jika :
Un+1 > Un maka deretnya disebut deret geometri naik, sebaliknya jika
Un+1 < Un maka deretnya disebut deret geometri turun.
Contoh Soal Deret geometri :
Diketahui deret 2 + 6 + 18 + 54 + 162 + …
U2/U1 = 6/2 = 3
U3/U2 = 18/6 = 3
U4/U3 = 54/18 = 3
Karena rasionya tetap yaitu 3 maka deret diatas disebut dengan deret geometri, dan karena Un+1 > Un maka deret tersebut termasuk deret geometri naik.
Rumus Suku ke-n Deret Geometri
Jika suku pertama dinyatakan dengan a, banyaknya suku dinyatakan dengan n, dan r menyatakan rasio maka suku ke-n dari deret geometri dapat dirumuskan sebagai berikut :
Un = arn – 1
Contoh soal :
Diketahui deret geometri 3 + 6 + 12 + 24 + … tentukan suku ke-13 dari deret geometri tersebut.
penyelesaian :
r = u2/u1 = 6/3 = 2
rumus suku ke-n (Un) = arn – 1
Suku ke-13 U = 3 x 213-1 = 3 x 212 = 3x 4.096 = 12.288
Jumlah n suku pertama pada deret geometri
Untuk mengetahui jumlah n suku ( Sn ) dari deret geometri dapat ditentukan dengan rumus sebagai berikut :
Hubungan Un dan Sn adalah Un = Sn – Sn-1
Contoh Soal :
Tentukan Jumlah 6 suku pertama dari deret geometri 3 + 6 + 12 + 24 + …
Penyelesaian :
a = 3
n = 6
r = 6/3 = 2, r >1
Lihat rumus Sn diatas maka ;
S6 = 3 ( 26– 1 ) / 2 -1 = 3 x 63 / 1 = 3 x 63 = 189
Nah mudahkan untuk menentukan jumlah n suku dari deret geometri yang menurut saya beda-beda tipislah sama deret aritmatika, nah yang perlu diingat adalah dalam penerapan rumus deret aritmatika dengan rumus deret geometri jangan sampai tertukar karena biasanya hal tersebut sering terjadi.
Untuk berdiskusi tentang Barisan dan Geret Geometri Materi Matematika SMP, silahkan tulis pada kolom komentar atau bisa menghubungi dengan klik menu kontak di blog ini, dan share info ini sebanyak-banyaknya ke media sosial kalian ya ^-^ Semoga bermanfaat, salam Pendidikan!
Artikel ini sudah publish dengan link https://www.andelina.me/2022/09/barisan-dan-geret-geometri-materi.html.
Disclaimer:
Setiap artikel yang berhubungan dengan soal-soal beserta kunci jawabannya, bertujuan untuk membantu siswa belajar dalam persiapan menghadapi UTS/PTS maupun UAS/PAT di sekolah. Tidak ada unsur membocorkan soal yang sifatnya rahasia.
Super ThanksSilahkan yang ingin mentraktir Admin, Dana akan digunakan untuk pengembangan website ini
www.andelina.me, Terima kasih.